Derivatives of Faber Polynomials and Markov Inequalities
نویسنده
چکیده
We study asymptotic behavior of the derivatives of Faber polynomials on a set with corners at the boundary. Our results have applications to the questions of sharpness of Markov inequalities for such sets. In particular, the found asymptotics are related to a general Markov-type inequality of Pommerenke and the associated conjecture of Erdős. We also prove a new bound for Faber polynomials on piecewise smooth domains.
منابع مشابه
Bernstein and Markov type inequalities for trigonometric polynomials on general sets∗
Bernstein and Markov-type inequalities are discussed for the derivatives of trigonometric and algebraic polynomials on general subsets of the real axis and of the unit circle. It has recently been proven by A. Lukashov that the sharp Bernstein factor for trigonometric polynomials is the equilibrium density of the image of the set on the unit circle under the mapping t → e. In this paper Lukasho...
متن کاملCoefficient Estimates for a General Subclass of m-fold Symmetric Bi-univalent Functions by Using Faber Polynomials
In the present paper, we introduce a new subclass H∑m (λ,β)of the m-fold symmetric bi-univalent functions. Also, we find the estimates of the Taylor-Maclaurin initial coefficients |am+1| , |a2m+1| and general coefficients |amk+1| (k ≥ 2) for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.
متن کاملMultivariate Markov Polynomial Inequalities and Chebyshev Nodes
This article considers the extension of V. A. Markov’s theorem for polynomial derivatives to polynomials with unit bound on the closed unit ball of any real normed linear space. We show that this extension is equivalent to an inequality for certain directional derivatives of polynomials in two variables that have unit bound on the Chebyshev nodes. We obtain a sharpening of the Markov inequality...
متن کاملMARKOV-NIKOLSKII TYPE INEQUALITY FOR ABSOLUTELY MONOTONE POLYNOMIALS OF ORDER k
A function Q is called absolutely monotone of order k on an interval I if Q(x) ≥ 0, Q(x) ≥ 0, . . . , Q(k)(x) ≥ 0, for all x ∈ I. An essentially sharp (up to a multiplicative absolute constant) Markov inequality for absolutely monotone polynomials of order k in Lp[−1, 1], p > 0, is established. One may guess that the right Markov factor is cn2/k and, indeed, this turns out to be the case. Moreo...
متن کاملZeros of the derivatives of Faber polynomials associated with a universal covering map
For a compact set E ⊂ C containing more than two points, we study asymptotic behavior of normalized zero counting measures {μk} of the derivatives of Faber polynomials associated with E. For example if E has empty interior, we prove that {μk} converges in the weakstar topology to a measure whose support is the boundary of g(D), where g : {|z| > r} ∪ {∞} → C\E is a universal covering map such th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 118 شماره
صفحات -
تاریخ انتشار 2002